专业净化耗材供应商
拥有自动化全流程整合生产工艺厂家
EUV光刻,终成主角!
EUV到底有多火,可能很多人没有概念。
在光刻机巨头ASML发布的2023年第三季度的报告中,EUV光刻机的预定额为5亿欧元,而到了第四季度,预定额陡然增加到了56亿欧元,整整翻了十倍之多。
要知道,这部分订购的光刻机大部分都不会在2024年内交付,至少要等到2025年,但包括台积电、三星和英特尔等巨头依旧只能乖乖交钱买期货,原因很简单,就是ASML目前仍然是蓝星上唯一一家能够量产EUV光刻机的厂商。
对于半导体行业来说,技术领先就意味着能赚钱,而独占了EUV这一重要市场后,就意味着ASML能有源源不断的收入:根据国外 MarketsandMarkets 的最新报告,EUV 光刻市场预计将从 2023 年的 94 亿美元增至 2028 年的 253 亿美元,2023-2028 年期间复合年增长率为21.8 %。
作为对比,ASML在2023年的总营收为276亿欧元,折合近300亿美元,五年后,光是EUV就能撑起ASML现在大半年的营收,在可预见的未来,不管是3nm、2nm、1nm或是更先进制程,它们都需要用到ASML所生产的EUV光刻机,台积电这样的代工厂赚得越多,ASML数钱就数得越开心。
对于传统的DUV,EUV的优势是显而易见的:
在生产方面,由于EUV光刻技术可以在单个芯片上封装更多的晶体管,因此可以以更低的成本批量生产芯片;在性能方面,采用EUV光刻技术生产的芯片具有更强的处理能力,能耗更低,性能更高;在工艺方面,与多重图案化相比,EUV 可减少掩模数量,打印更多的二维设计,从而在工艺简化方面带来巨大优势;
对于有志于先进制程的晶圆厂来说,EUV具备极大的吸引力,但上述这几个优势,却花费了数十年的时间,穷尽了无数人的努力,才终于来到我们面前。
EUV的故事,还要从20 世纪 80 年代中期的日本讲起。
上世纪80年代的半导体光刻仍然依赖于汞灯,整个行业正在寻找更先进的光刻办法,希望利用波长更短的光来延续摩尔定律,让芯片的性能更进一步,而当时还在日本电报电话公司(NTT)供职的木下博夫,在工作时萌生了EUVL(极紫外光刻)的想法。
为了实现EUVL,木下博夫开始寻找更短波长的 X 射线,但问题也逐步浮现,其中包括缺乏能够聚焦 X 射线用于光刻的透镜或镜子。而在此时,他看到了 Jim Underwood 和 Troy Barbee的一篇论文,报告中描述了第一个波长为 10 至 100 nm(我们现在称为 EUV)的多层反射镜。
与掠射角反射镜相比,多层反射镜是一个巨大的进步,当时唯一可用于较短波长 X 射线的就是掠射角反射镜,而多层反射镜更进一步,为 EUV 波长的光刻技术铺好了道路。木下博夫成功实现了 EUV 中图像的首次聚焦,并在 1986 年日本应用物理学会的一次会议上报告了他的成就。
与大部分人想象的不同,EUV的初次登场没有鲜花没有掌声,迎来的却是一片质疑, “不幸的是,观众对我的演讲高度怀疑,” 木下博夫后来在一次有关 EUV 光刻技术出现的特邀演讲中说道,“但是,我的信念没有改变。”
木村博夫如今已被公认为是EUV光刻技术的奠基人,当时的他大概没想到,EUV光刻日后需要耗费三十多年时间、数十亿美元资金以及数千名工程师和科学家的努力来实现落地,最终成为摩尔定律的最坚定的捍卫者。
虽然NTT 不看好EUV,选择押宝在其他光刻技术,但公司本身并没有阻止木村的研究,1993 年,木村组织了一次有关EUV技术的美日会议,吸引了约 50 名研究人员参加,并由此建立了两国之间在EUV光刻技术上的联系。
“摩尔定律遇到了麻烦,”伯克利国家实验室的David Attwood说,“英特尔指望走在摩尔定律的最前沿,以高价销售其产品。” 当时193 nm 氟化氩激光器已经开始用于光刻技术的开发,但DUV(深紫外光)光刻技术似乎已经走到了尽头,对于英特尔来说,无法继续缩小芯片几何尺寸,就意味着芯片性能难以继续提升,也意味着半导体行业发展的停滞,整个业界都对未来感到焦虑不安。
转折点出现在英特尔研究总监John Carruthers身上,他对英特尔未来的选择进行了审视,并得出结论,想要摩尔定律延续的唯一途径,就是在一个全行业项目上投入十亿美元,来开发EUV光刻这项技术。
当John Carruthers向英特尔高层提出这一方案时,安迪·格鲁夫(Andy Grove)愤怒地拍着桌子,但戈登·摩尔(Gordon Moore)却颇感兴趣,最终让格鲁夫也按下了同意投资的按钮。
这位摩尔定律的提出者在一次行业会议上宣布:“英特尔来了……我们正在下注,我们希望您加入我们。”
新闻中心
联系我们 | 硕源集团